Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Lancet Microbe ; 4(6): e397-e408, 2023 06.
Article in English | MEDLINE | ID: covidwho-2294174

ABSTRACT

BACKGROUND: Despite circumstantial evidence for aerosol and fomite spread of SARS-CoV-2, empirical data linking either pathway with transmission are scarce. Here we aimed to assess whether the presence of SARS-CoV-2 on frequently-touched surfaces and residents' hands was a predictor of SARS-CoV-2 household transmission. METHODS: In this longitudinal cohort study, during the pre-alpha (September to December, 2020) and alpha (B.1.1.7; December, 2020, to April, 2021) SARS-CoV-2 variant waves, we prospectively recruited contacts from households exposed to newly diagnosed COVID-19 primary cases, in London, UK. To maximally capture transmission events, contacts were recruited regardless of symptom status and serially tested for SARS-CoV-2 infection by RT-PCR on upper respiratory tract (URT) samples and, in a subcohort, by serial serology. Contacts' hands, primary cases' hands, and frequently-touched surface-samples from communal areas were tested for SARS-CoV-2 RNA. SARS-CoV-2 URT isolates from 25 primary case-contact pairs underwent whole-genome sequencing (WGS). FINDINGS: From Aug 1, 2020, until March 31, 2021, 620 contacts of PCR-confirmed SARS-CoV-2-infected primary cases were recruited. 414 household contacts (from 279 households) with available serial URT PCR results were analysed in the full household contacts' cohort, and of those, 134 contacts with available longitudinal serology data and not vaccinated pre-enrolment were analysed in the serology subcohort. Household infection rate was 28·4% (95% CI 20·8-37·5) for pre-alpha-exposed contacts and 51·8% (42·5-61·0) for alpha-exposed contacts (p=0·0047). Primary cases' URT RNA viral load did not correlate with transmission, but was associated with detection of SARS-CoV-2 RNA on their hands (p=0·031). SARS-CoV-2 detected on primary cases' hands, in turn, predicted contacts' risk of infection (adjusted relative risk [aRR]=1·70 [95% CI 1·24-2·31]), as did SARS-CoV-2 RNA presence on household surfaces (aRR=1·66 [1·09-2·55]) and contacts' hands (aRR=2·06 [1·57-2·69]). In six contacts with an initial negative URT PCR result, hand-swab (n=3) and household surface-swab (n=3) PCR positivity preceded URT PCR positivity. WGS corroborated household transmission. INTERPRETATION: Presence of SARS-CoV-2 RNA on primary cases' and contacts' hands and on frequently-touched household surfaces associates with transmission, identifying these as potential vectors for spread in households. FUNDING: National Institute for Health Research Health Protection Research Unit in Respiratory Infections, Medical Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , RNA, Viral/genetics , Longitudinal Studies , Risk Factors , Cohort Studies
2.
CRISPR J ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2301565

ABSTRACT

Point-of-care (POC) nucleic acid detection technologies are poised to aid gold-standard technologies in controlling the COVID-19 pandemic, yet shortcomings in the capability to perform critically needed complex detection-such as multiplexed detection for viral variant surveillance-may limit their widespread adoption. Herein, we developed a robust multiplexed clustered regularly interspaced short palindromic repeats (CRISPR)-based detection using LwaCas13a and PsmCas13b to simultaneously diagnose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and pinpoint the causative SARS-CoV-2 variant of concern (VOC)-including globally dominant VOCs Delta (B.1.617.2) and Omicron (B.1.1.529)-all the while maintaining high levels of accuracy upon the detection of multiple SARS-CoV-2 gene targets. The platform has several attributes suitable for POC use: premixed, freeze-dried reagents for easy use and storage; convenient direct-to-eye or smartphone-based readouts; and a one-pot variant of the multiplexed detection. To reduce reliance on proprietary reagents and enable sustainable use of such a technology in low- and middle-income countries, we locally produced and formulated our own recombinase polymerase amplification reaction and demonstrated its equivalent efficiency to commercial counterparts. Our tool-CRISPR-based detection for simultaneous COVID-19 diagnosis and variant surveillance that can be locally manufactured-may enable sustainable use of CRISPR diagnostics technologies for COVID-19 and other diseases in POC settings.

3.
Nat Rev Chem ; 7(3): 144-161, 2023.
Article in English | MEDLINE | ID: covidwho-2263149

ABSTRACT

Synthetic DNA is of increasing demand across many sectors of research and commercial activities. Engineering biology, therapy, data storage and nanotechnology are set for rapid developments if DNA can be provided at scale and low cost. Stimulated by successes in next generation sequencing and gene editing technologies, DNA synthesis is already a burgeoning industry. However, the synthesis of >200 bp sequences remains unaffordable. To overcome these limitations and start writing DNA as effectively as it is read, alternative technologies have been developed including molecular assembly and cloning methods, template-independent enzymatic synthesis, microarray and rolling circle amplification techniques. Here, we review the progress in developing and commercializing these technologies, which are exemplified by innovations from leading companies. We discuss pros and cons of each technology, the need for oversight and regulatory policies for DNA synthesis as a whole and give an overview of DNA synthesis business models.

4.
Lancet Respir Med ; 10(11): 1061-1073, 2022 11.
Article in English | MEDLINE | ID: covidwho-2106219

ABSTRACT

BACKGROUND: Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting. METHODS: The Assessment of Transmission and Contagiousness of COVID-19 in Contacts (ATACCC) study was a UK prospective, longitudinal, community cohort of contacts of newly diagnosed, PCR-confirmed SARS-CoV-2 index cases. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. The primary objective was to define the window of SARS-CoV-2 infectiousness and its temporal correlation with symptom onset. We quantified viral RNA load by RT-PCR and infectious viral shedding by enumerating cultivable virus daily across the course of infection. Participants completed a daily diary to track the emergence of symptoms. Outcomes were assessed with empirical data and a phenomenological Bayesian hierarchical model. FINDINGS: Between Sept 13, 2020, and March 31, 2021, we enrolled 393 contacts from 327 households (the SARS-CoV-2 pre-alpha and alpha variant waves); and between May 24, 2021, and Oct 28, 2021, we enrolled 345 contacts from 215 households (the delta variant wave). 173 of these 738 contacts were PCR positive for more than one timepoint, 57 of which were at the start of infection and comprised the final study population. The onset and end of infectious viral shedding were captured in 42 cases and the median duration of infectiousness was 5 (IQR 3-7) days. Although 24 (63%) of 38 cases had PCR-detectable virus before symptom onset, only seven (20%) of 35 shed infectious virus presymptomatically. Symptom onset was a median of 3 days before both peak viral RNA and peak infectious viral load (viral RNA IQR 3-5 days, n=38; plaque-forming units IQR 3-6 days, n=35). Notably, 22 (65%) of 34 cases and eight (24%) of 34 cases continued to shed infectious virus 5 days and 7 days post-symptom onset, respectively (survival probabilities 67% and 35%). Correlation of lateral flow device (LFD) results with infectious viral shedding was poor during the viral growth phase (sensitivity 67% [95% CI 59-75]), but high during the decline phase (92% [86-96]). Infectious virus kinetic modelling suggested that the initial rate of viral replication determines the course of infection and infectiousness. INTERPRETATION: Less than a quarter of COVID-19 cases shed infectious virus before symptom onset; under a crude 5-day self-isolation period from symptom onset, two-thirds of cases released into the community would still be infectious, but with reduced infectious viral shedding. Our findings support a role for LFDs to safely accelerate deisolation but not for early diagnosis, unless used daily. These high-resolution, community-based data provide evidence to inform infection control guidance. FUNDING: National Institute for Health and Care Research.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , RNA, Viral , Cohort Studies , Prospective Studies , Bayes Theorem
5.
J Virol Methods ; 309: 114607, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1983588

ABSTRACT

Demand for accurate SARS-CoV-2 diagnostics is high. Most samples in the UK are collected in the community and rely on the postal service for delivery to the laboratories. The current recommendation remains that swabs should be collected in Viral Transport Media (VTM) and transported with a cold chain to the laboratory for RNA extraction and RT-qPCR. This is not always possible. We aimed to test the stability of SARS-CoV-2 RNA subjected to different pre-analytical conditions. Swabs were dipped into PBS containing cultured SARS-CoV-2 and placed in either a dry tube or a tube containing either normal saline or VTM. The tubes were then stored at different temperatures (20-50 °C) for variable periods (8 h to 5 days). Samples were tested by RT-qPCR targeting SARS-CoV-2 E gene. VTM outperformed swabs in saline and dry swabs in all conditions. Samples in VTM were stable, independent of a cold chain, for 5 days, with a maximum increase in cycle threshold (Ct) of 1.34 when held at 40 °C. Using normal saline as the transport media resulted in a loss of sensitivity (increased Ct) over time and with increasing temperature (up to 7.8 cycles compared to VTM). SARS-CoV-2 was not detected in 3/9 samples in normal saline when tested after 120 h incubation. Transportation of samples in VTM provides a high level of confidence in the results despite the potential for considerable, uncontrolled variation in temperature and longer transportation periods. False negative results may be seen after 96 h in saline and viral loads will appear lower.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saline Solution , Specimen Handling/methods
6.
7.
Lancet Infect Dis ; 22(2): 183-195, 2022 02.
Article in English | MEDLINE | ID: covidwho-1598157

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2) variant is highly transmissible and spreading globally, including in populations with high vaccination rates. We aimed to investigate transmission and viral load kinetics in vaccinated and unvaccinated individuals with mild delta variant infection in the community. METHODS: Between Sept 13, 2020, and Sept 15, 2021, 602 community contacts (identified via the UK contract-tracing system) of 471 UK COVID-19 index cases were recruited to the Assessment of Transmission and Contagiousness of COVID-19 in Contacts cohort study and contributed 8145 upper respiratory tract samples from daily sampling for up to 20 days. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. We analysed transmission risk by vaccination status for 231 contacts exposed to 162 epidemiologically linked delta variant-infected index cases. We compared viral load trajectories from fully vaccinated individuals with delta infection (n=29) with unvaccinated individuals with delta (n=16), alpha (B.1.1.7; n=39), and pre-alpha (n=49) infections. Primary outcomes for the epidemiological analysis were to assess the secondary attack rate (SAR) in household contacts stratified by contact vaccination status and the index cases' vaccination status. Primary outcomes for the viral load kinetics analysis were to detect differences in the peak viral load, viral growth rate, and viral decline rate between participants according to SARS-CoV-2 variant and vaccination status. FINDINGS: The SAR in household contacts exposed to the delta variant was 25% (95% CI 18-33) for fully vaccinated individuals compared with 38% (24-53) in unvaccinated individuals. The median time between second vaccine dose and study recruitment in fully vaccinated contacts was longer for infected individuals (median 101 days [IQR 74-120]) than for uninfected individuals (64 days [32-97], p=0·001). SAR among household contacts exposed to fully vaccinated index cases was similar to household contacts exposed to unvaccinated index cases (25% [95% CI 15-35] for vaccinated vs 23% [15-31] for unvaccinated). 12 (39%) of 31 infections in fully vaccinated household contacts arose from fully vaccinated epidemiologically linked index cases, further confirmed by genomic and virological analysis in three index case-contact pairs. Although peak viral load did not differ by vaccination status or variant type, it increased modestly with age (difference of 0·39 [95% credible interval -0·03 to 0·79] in peak log10 viral load per mL between those aged 10 years and 50 years). Fully vaccinated individuals with delta variant infection had a faster (posterior probability >0·84) mean rate of viral load decline (0·95 log10 copies per mL per day) than did unvaccinated individuals with pre-alpha (0·69), alpha (0·82), or delta (0·79) variant infections. Within individuals, faster viral load growth was correlated with higher peak viral load (correlation 0·42 [95% credible interval 0·13 to 0·65]) and slower decline (-0·44 [-0·67 to -0·18]). INTERPRETATION: Vaccination reduces the risk of delta variant infection and accelerates viral clearance. Nonetheless, fully vaccinated individuals with breakthrough infections have peak viral load similar to unvaccinated cases and can efficiently transmit infection in household settings, including to fully vaccinated contacts. Host-virus interactions early in infection may shape the entire viral trajectory. FUNDING: National Institute for Health Research.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2/physiology , Viral Load/physiology , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Female , Humans , Kinetics , Longitudinal Studies , Male , Middle Aged , Prospective Studies , United Kingdom/epidemiology , Vaccination , Vaccination Coverage
9.
Sci Rep ; 11(1): 23260, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545651

ABSTRACT

An overreliance on commercial, kit-based RNA extraction in the molecular diagnoses of infectious disease presents a challenge in the event of supply chain disruptions and can potentially hinder testing capacity in times of need. In this study, we adapted a well-established, robust TRIzol-based RNA extraction protocol into a high-throughput format through miniaturization and automation. The workflow was validated by RT-qPCR assay for SARS-CoV-2 detection to illustrate its scalability without interference to downstream diagnostic sensitivity and accuracy. This semi-automated, kit-free approach offers a versatile alternative to prevailing integrated solid-phase RNA extraction proprietary systems, with the added advantage of improved cost-effectiveness for high volume acquisition of quality RNA whether for use in clinical diagnoses or for diverse molecular applications.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , High-Throughput Screening Assays/methods , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , Humans , Molecular Diagnostic Techniques/methods , RNA, Viral/analysis , ROC Curve
10.
Nat Commun ; 11(1): 4793, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-1387318

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
J Virol Methods ; 294: 114174, 2021 08.
Article in English | MEDLINE | ID: covidwho-1226316

ABSTRACT

There is growing evidence that measurement of SARS-CoV-2 viral copy number can inform clinical and public health management of SARS-CoV-2 carriers and COVID-19 patients. Here we show that quantification of SARS-CoV-2 is feasible in a clinical setting, using a duplex RT-qPCR assay which targets both the E gene (Charité assay) and a human RNA transcript, RNase P (CDC assay) as an internal sample sufficiency control. Samples in which RNase P is not amplified indicate that sample degradation has occurred, PCR inhibitors are present, RNA extraction has failed or swabbing technique was insufficient. This important internal control reveals that 2.4 % of nasopharyngeal swabs (15/618 samples) are inadequate for SARS-CoV-2 testing which, if not identified, could result in false negative results. We show that our assay is linear across at least 7 logs and is highly reproducible, enabling the conversion of Cq values to viral copy numbers using a standard curve. Furthermore, the SARS-CoV-2 copy number was independent of the RNase P copy number indicating that the per-swab viral copy number is not dependent on sampling- further allowing comparisons between samples. The ability to quantify SARS-CoV-2 viral copy number will provide an important opportunity for viral burden-guided public health and clinical decision making.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 Nucleic Acid Testing/standards , RNA, Viral/genetics , SARS-CoV-2/genetics , Specimen Handling/standards , COVID-19/diagnosis , COVID-19/virology , Gene Dosage , Genes, Essential , Humans , Limit of Detection , RNA, Viral/isolation & purification , Reference Standards , Ribonuclease P/genetics , Specimen Handling/methods , Viral Load
12.
Nat Commun ; 11(1): 4464, 2020 09 08.
Article in English | MEDLINE | ID: covidwho-752502

ABSTRACT

The SARS-CoV-2 pandemic has shown how a rapid rise in demand for patient and community sample testing can quickly overwhelm testing capability globally. With most diagnostic infrastructure dependent on specialized instruments, their exclusive reagent supplies quickly become bottlenecks, creating an urgent need for approaches to boost testing capacity. We address this challenge by refocusing the London Biofoundry onto the development of alternative testing pipelines. Here, we present a reagent-agnostic automated SARS-CoV-2 testing platform that can be quickly deployed and scaled. Using an in-house-generated, open-source, MS2-virus-like particle (VLP) SARS-CoV-2 standard, we validate RNA extraction and RT-qPCR workflows as well as two detection assays based on CRISPR-Cas13a and RT-loop-mediated isothermal amplification (RT-LAMP). In collaboration with an NHS diagnostic testing lab, we report the performance of the overall workflow and detection of SARS-CoV-2 in patient samples using RT-qPCR, CRISPR-Cas13a, and RT-LAMP. The validated RNA extraction and RT-qPCR platform has been installed in NHS diagnostic labs, increasing testing capacity by 1000 samples per day.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Betacoronavirus/isolation & purification , Biological Assay , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/standards , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL